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The development of inflammatory bowel diseases (IBD) involves the breakdown of
two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The
destabilization of each barrier can promote initiation and progression of the
disease. Interestingly, first evidence is available that both barriers are
communicating through secreted factors that may accordingly serve as targets
for therapeutic modulation of barrier functions. Interferon (IFN)-γ is among the
major pathogenesis factors in IBD and can severely impair both barriers. In order to
identify factors transmitting signals from the GVB to the epithelial cell barrier, we
analyzed the secretome of IFN-γ-treated human intestinal endothelial cells
(HIEC). To this goal, HIEC were isolated in high purity from normal colon
tissues. HIEC were either untreated or stimulated with IFN-γ (10 U/mL). After
48 h, conditionedmedia (CM) were harvested and subjected to comparative hyper
reaction monitoring mass spectrometry (HRM™ MS). In total, 1,084 human
proteins were detected in the HIEC-CM. Among these, 43 proteins were
present in significantly different concentrations between the CM of IFN-γ- and
control-stimulated HIEC. Several of these proteins were also differentially
expressed in various murine colitis models as compared to healthy animals
supporting the relevance of these proteins secreted by inflammatory activated
HIEC in the inter-barrier communication in IBD. The angiocrine pathogenic
impact of these differentially secreted HIEC proteins on the epithelial cell
barrier and their perspectives as targets to treat IBD by modulation of trans-
barrier communication is discussed in detail.
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Introduction

Inflammatory bowel diseases (IBD) affect several million
individuals worldwide, with Crohn’s disease (CD) and ulcerative
colitis (UC) being the clinically predominant forms. IBD similarities
are based on their common presentation as intestinal chronic
inflammatory disorders characterized by cyclic flares of
destructive inflammation resulting in severe impact on the
intestinal barrier functions (Zhang and Li, 2014). Heterogeneity
is present at the levels of clinical presentation, immune reactions,
molecular-genetic components and microbial players involved
(Lloyd-Price et al., 2019).

The intestinal barrier serves manifold tasks, which is also evident
from its complex structure composed of two sequential physical
barriers. The first barrier from the intestinal lumen is established by
the epithelial barrier that consists of a single cell layer of epithelial
cells overlaid by a mucus layer, which physically separates the
microbiota in the gut lumen from epithelial cells (Stürzl et al.,
2021). Directly below this epithelial barrier lies the gut-vascular
barrier (GVB) controlling the entry of molecules and cells into the
portal circulation and their subsequent delivery to the liver (Spadoni
et al., 2015; Spadoni et al., 2017).

The structure and functions of the epithelial barrier have been
comprehensively described in previous work (López-Posadas et al.,
2017). In contrast, the existence and significant contribution of the
GVB to IBD has been recognized only recently. Clinical evidence for
a role of the GVB in IBD was obtained by the observation that the
vasculature in patients exhibits increased permeability during acute
phases of the disease, which is decreasing or absent in remission
phases (Langer et al., 2019). In addition, studies in preclinical mouse
models revealed that a breakdown of the GVB in the colon allows the
permeation of bacteria into the blood with access to distant organs,
including the liver, with significant impact on IBD pathogenesis
(Spadoni et al., 2015). In own studies, we detected that IFN-γ, an
immune-modulatory cytokine with driver activity in IBD
pathogenesis, increases vascular permeability in the dextran
sodium sulfate (DSS)-induced colitis model (Langer et al., 2019).
Increased intestinal blood vessel permeability was associated with
structural and functional perturbations of the adherens junction
protein vascular endothelial (VE)-cadherin and significant
worsening of the disease. An endothelial specific knock-out of
the IFN-γ-receptor 2 (IFNγR2) as well as pharmacological vessel
stabilization in mouse models suppressed vascular permeability and
the development of acute and chronic DSS-colitis (Langer et al.,
2019). These results provided clear evidence for the importance of
the vascular barrier in IBD.

Effective cooperation of two different barriers requires
coordinated action and communication. Well-established
communication pathways between the epithelial barrier and the
GVB are indicated by the observation that nutrient composition in
the gut can affect the blood flow (Stan et al., 2012; Gentile and King,
2018). In addition, epithelial cells can secrete factors in response to
pathogens such as cytokines, chemokines, reactive oxygen species,
and lipid mediators, which can activate endothelial cells (Boueiz and
Hassoun, 2009; Franze et al., 2016; Ferrari et al., 2017; Gentile and
King, 2018).

However, the endothelium is not only a passive tube system
transporting blood and receiving signals from surrounding cells, but

exerts perfusion-independent functions, which actively contribute to
the tissue microenvironment in organ development and diseases. In
IBD, the intestinal microvasculature is notably involved in immune
cell recruitment through expression of cell adhesion molecules
(CAMs), such as VCAM1 or MadCAM1 (Binion et al., 1998).
The inhibition of T-cell recruitment by targeting the binding of
α4β7 integrins to endothelial MadCAM1 represents a new
therapeutic axis in IBD (Neurath, 2017).

The first hint for an active paracrine function of the endothelium
within the tissue microenvironment was derived from cancer
research (Butler et al., 2010). Subsequent studies identified tumor
repressive molecules that are expressed and released from
endothelial cells, including the slit homolog 2 protein (Slit 2),
perlecan, thrombospondin and SPARCL1 (Butler et al., 2010;
Franses et al., 2011; Naschberger et al., 2016; Hinshaw and
Shevde, 2019). Now, it is generally accepted that endothelial cells
can actively trigger the microenvironment via so called “angiocrine
factors” -a term that. includes secreted and membrane-bound
inhibitory or stimulatory growth factors, trophogens, chemokines,
cytokines, extracellular matrix components, exosomes, and other
cellular products expressed by endothelial cells (Rafii et al., 2016).

Angiocrine functions in IBD have not been extensively
investigated as yet. Only recently, we performed a meta-analysis
to investigate whether angiocrine signaling in the colon may impact
epithelial barrier functions (Stürzl et al., 2021). This approach
yielded six putative candidates that are secreted from endothelial
cells and may contribute to IBD pathogenesis, including proteins of
the von Willebrand factor domain superfamily (VWA1, vWF),
tissue inhibitor of metalloproteinases (TIMP)-1, matrix
metalloproteinase (MMP)-14, the chemokine CXCL10, and the
matricellular protein SPARCL1 (Stürzl et al., 2021). The
expression and known functions of these proteins supported the
hypothesis that they may be active in IBD. However, the
bioinformatical analysis also showed that the overlap of genes
retrieved from the different studies was very low, which was well
in agreement with the high variation of activation and organ-
dependent plasticity of endothelial cells (Stürzl et al., 2021).

Analysis of the IFN-γ-induced
secretome in HIEC

Here we aimed to determine putative angiocrine factors released
from cultivated primary human intestinal endothelial cells (HIEC)
under pathogenically relevant stimulation in an experimental
approach. Based on own previous results we used IFN-γ as a
model cytokine for stimulation (Langer et al., 2019). In order to
reduce pathogenesis-related heterogeneity we refrained from using
patient-derived human HIEC but focused on highly pure cultures of
healthy HIEC instead. To this goal, HIEC were isolated from healthy
colon areas of five patients who underwent surgical therapy for
colorectal cancer (CRC) (see Supplementary Methods). Endothelial
cells were isolated by FACS-based cell sorting following previously
established protocols (Naschberger et al., 2016; Naschberger et al.,
2018). A purity above 98% of all five cultures was determined with
reverse transcription quantitative polymerase chain reaction (RT-
qPCR) and cytochemistry as described previously (Naschberger
et al., 2016; Naschberger et al., 2018) and is exemplarily shown
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FIGURE 1
The secretome of IFN-γ-treated human intestinal endothelial cells. (A) Cultivated human intestinal endothelial cells (HIEC) uniformly express the
endothelial cell-specific CD31 antigen whereas the epithelial colorectal cancer cell line DLD1 is negative. (B) No difference in the cell phenotype is
detected in untreated and IFN-γ-treated HIEC. (C) IFN-γ treatment (10 U/mL, 48 h) induces expression of GBP-1 in all HIEC cultures as determined by RT-
qPCR. (D) Volcano blot of the secretome of IFN-γ-treated HIEC. Proteins present in significantly different concentrations in the cell culture
supernatants of IFN-γ-treated and untreated HIEC are indicated in red. (E) Box blots showing differential secretion of the different factors in all HIEC
cultures (n = 5) in response to IFN-γ. p-values were calculated with the one sample t-test (μ = 0) and were corrected for overall FDR using the q-value
approach (Storey and Tibshirani, 2003). (F) IFN-γ treatment (10 U/mL, 48 h) induces secretion of GBP-1 in all HIEC cultures as determined by GBP-1-
specific ELISA. (G) Expression of genes encoding the top ten secreted proteins from IFN-γ-treated HIEC in different experimentally inducedmurine colitis
models. Expression relative to healthy control mice is indicated by color code. Numbers are representing adjusted p-values of statistical differences. (A,B)
Scale bars correspond to 500 µm. (C,F) p values: *** = p <0.001, ** = p <0.01, and * = p <0.05, paired t-test.
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TABLE 1 Significantly changed proteins between the supernatants of IFN-γ treated and untreated HIEC.

Protein description Gene ID Number of precursors Ratio p-value

C-X-C motif chemokine 9 CXCL9 3 3625.19 8.43E-09

C-X-C motif chemokine 10 CXCL10 8 348.02 2.00E-09

Probable carboxypeptidase X1 CPXM1 1 126.95 3.15E-03

Secreted and transmembrane protein 1 SECTM1 4 112.59 1.70E-06

Gamma-interferon-inducible lysosomal thiol reductase IFI30 5 92.04 1.89E-07

Fractalkine CX3CL1 2 58.11 3.79E-04

Interleukin-18-binding protein IL18BP 3 20.93 2.32E-06

Complement factor B CFB 2 15.52 3.60E-04

Guanylate-binding protein 2 GBP2 3 11.41 2.94E-03

Guanylate-binding protein 1 GBP1 14 10.09 1.27E-11

Hyaluronan and proteoglycan link protein 3 HAPLN3 7 6.86 3.88E-05

Cathepsin S CTSS 11 4.23 1.13E-07

Signal transducer and activator of transcription 1-alpha/beta STAT1 3 4.00 2.74E-04

Tryptophan-tRNA ligase. cytoplasmic WARS1 12 3.91 2.85E-10

Golgi membrane protein 1 GOLM1 16 3.67 6.27E-15

Complement factor H CFH 31 3.57 5.47E-19

Galectin-3-binding protein LGALS3BP 15 3.20 3.72E-13

Complement C1r subcomponent C1R 11 2.65 6.89E-17

Cytosol aminopeptidase LAP3 3 2.58 1.86E-03

Tissue-type plasminogen activator PLAT 20 2.41 7.70E-08

Legumain LGMN 11 2.07 3.38E-04

HLA class I histocompatibility antigen. C alpha chain HLA-C 13 1.91 5.51E-04

Cystatin-C CST3 10 1.88 1.88E-03

Keratin. type I cytoskeletal 14 KRT14 10 1.88 6.29E-05

Midkine MDK 8 1.74 3.10E-03

Beta-2-microglobulin B2M 5 1.72 2.06E-07

Procathepsin L CTSL 7 1.61 8.39E-04

Glypican-1 GPC1 7 0.67 1.87E-03

Basement membrane-specific heparan sulfate proteoglycan core protein HSPG2 170 0.64 7.03E-37

Clathrin heavy chain 1 CLTC 30 0.64 5.30E-08

X-ray repair cross-complementing protein 6 XRCC6 6 0.63 5.72E-03

Endothelial cell-specific molecule 1 ESM1 6 0.60 1.67E-03

Ephrin type-B receptor 4 EPHB4 2 0.60 1.71E-03

Ephrin-A1 EFNA1 4 0.59 2.42E-03

MAM domain-containing protein 2 MAMDC2 20 0.58 1.55E-08

Eukaryotic translation initiation factor 3 subunit B EIF3B 4 0.57 4.86E-03

Vesicle-trafficking protein SEC22b SEC22B 2 0.57 4.10E-03

Lymphatic vessel endothelial hyaluronic acid receptor 1 LYVE1 4 0.53 4.67E-04

(Continued on following page)
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here by the uniform expression of the endothelial marker CD31 in
all HIEC of the different patients but not in the CRC tumor cell line
DLD1 (Figure 1A, Supplementary Figures S1A).

The five HIEC cultures were treated with IFN-γ which did not
induce different morphology in untreated as compared to treated
HIEC (Figure 1B, quantitative evaluation Supplementary Figures
S1B). However, successful stimulation of all five cultures was
indicated by the expression of IFN-γ-induced guanylate binding
protein-1 (GBP-1), a well-established marker for IFN-γ stimulation
of eukaryotic cells (Guenzi et al., 2001; Lubeseder-Martellato et al.,
2002), which was highly increased in all stimulated HIEC
(Figure 1C).

Next, cell culture supernatants were harvested from the IFN-γ-
treated and untreated HIEC and subjected to hyper reaction
monitoring mass spectrometry (HRM™ MS). Comparison of
stimulated and unstimulated cultures identified 1,713 proteins
detected by a mean of 5.79 peptides per protein. From all
proteins identified, 1,084 were of human origin (629 from
medium FBS) with 43 proteins differentially secreted between the
CM of IFN-γ-stimulated and unstimulated HIEC (Figure 1D, red;
Table 1). The top ten differentially secreted proteins included the
chemokines CXCL9, CXCL10 and fractalkine as well as the IFN-γ-
induced secreted proteins secreted and transmembrane protein 1
(SECTM1 or K12), gamma-interferon-inducible lysosomal thiol
reductase (IFI30) and GBP-1 (Figure 1E). Of note, increased
secretion of GBP-1 by IFN-γ-treated HIECs as detected by mass
spectrometry was confirmed by independent ELISA (Figure 1F).

Interestingly, with the exception of CXCL10 no further top
candidate of our previous meta-analysis was detected in the present
study confirming that endothelial cells exhibit high tissue-related
heterogeneity and suggesting that HIEC should be preferentially
used in order to obtain data of relevance for IBD.

Pathogenic impact of the vascular IFN-
γ-secretome in IBD

In order to determine the pathogenic impact of the intestinal
vascular IFN-γ-induced secretome, the expression of the top ten
secreted proteins was examined in different murine models of
experimentally induced colitis, including acute and chronic DSS-
colitis as well as oxazolone-induced colitis and T-cell transfer colitis
in a next step. The expression of the genes encoding CXCL9,
CXCL10, CPMX1, IL18BP and GBP2 was highly significantly
increased in each of the different models (Figure 1G). Moreover,

GBP-1 and IFI30 showed an increased expression in three and two
of the models, respectively (Figure 1G). Only SECTM1, fractalkine
and CFB did not show a significant increase of expression in any of
the different colitis models (Figure 1G). Altogether, seven of the ten
genes, encoding for the most differentially secreted proteins from
HIEC in the presence of IFN-γ, also showed significantly increased
expression in experimentally induced colitis models, supporting
their function in pathogenesis. In the following, the most relevant
top candidates involved in IBD pathogenesis retrieved by our
screening are discussed in detail.

Discussion

CXCL10

CXCL10 is an 8.7 kDa non-glutamic acid leucine-arginine
(ELR)-CXC chemokine, which acts as a ligand for the
CXCR3 receptor (Singh et al., 2007). CXCL10 is secreted by
several cell types, including endothelial cells, in response to IFN-
γ to induce the recruitment and activation of CXCR3+ cells (Singh
et al., 2007). CXCL10 is upregulated in colonic tissues of patients
with UC and CD compared to control non-IBD tissues (Uguccioni
et al., 1999; Zahn et al., 2009; Schroepf et al., 2010; Hosomi et al.,
2011; Ostvik et al., 2013). Accordingly, the number of CXCR3-
expressing immune cells is increased in the lamina propria of IBD
patients (Singh et al., 2007). Expression of CXCL10 in colon biopsies
correlates with secondary loss of response to anti-TNF-α therapy
after achieving an initial response (Luther et al., 2018). Elevated
CXCL10 serum levels correlate with extra-intestinal manifestations
indicating that CXCL10 is released into the circulation during IBD
(Martinez-Fierro et al., 2019). Furthermore, CXCL10 serum levels
are increased in IBD patients with unstable remission compared to
patients with stable remission (Kessel et al., 2021). Based on these
findings, several clinical trials were performed to test the efficacy of
eldelumab, a human monoclonal antibody against CXCL10, as
treatment for UC (Trivedi and Adams, 2018). Despite trends
towards clinical response and remission, the primary and
secondary end points were not met and further dose-response or
combination studies are warranted (Danese and Panés, 2014; Mayer
et al., 2014; Sandborn et al., 2016). In murine colitis models,
inhibition of CXCL10 reduces intestinal inflammation (Sasaki
et al., 2002; Singh et al., 2003; Hyun et al., 2005; Suzuki et al.,
2007; Zhao et al., 2017) but also had unexpected effects on intestinal
epithelial cells (Sasaki et al., 2002; Singh et al., 2003; Hyun et al.,

TABLE 1 (Continued) Significantly changed proteins between the supernatants of IFN-γ treated and untreated HIEC.

Protein description Gene ID Number of precursors Ratio p-value

Splicing factor. proline- and glutamine-rich SFPQ 4 0.52 6.29E-03

Annexin A6 ANXA6 6 0.50 1.91E-04

Stromelysin-2 MMP10 9 0.48 7.77E-06

Placenta growth factor PGF 3 0.47 1.22E-03

Protein SETSIP; Protein SET SETSIP, SET 2 0.42 8.19E-05
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2005; Suzuki et al., 2007; Zhao et al., 2017). Neutralization of
CXCL10 resulted in increased epithelial cell proliferation and
decreased apoptosis, which resulted in reduced epithelial
ulceration and longer colon crypts (Sasaki et al., 2002; Suzuki
et al., 2007). In addition, CD patients with the highest levels of
the IFN-γ-induced chemokines CXCL9, CXCL10 and
CXCL11 showed hypertrophied epithelial layers at multiple sites
(Singh et al., 2007). These findings suggest that CXCL10 secreted by
endothelial cells during intestinal inflammation is not only involved
in immune cell recruitment but also crypt cell growth regulation and
extra-intestinal manifestations.

CXCL9

Similarly to CXCL10, CXCL9 is a CXC-chemokine induced by
IFN-γ in numerous cell types. It also binds to the CXCR3 receptor,
and is involved in the recruitment of granulocytes and
mononuclear cells. CXCL9 expression is increased in mucosal
samples of UC and CD patients (Hosomi et al., 2011; Elia and
Guglielmi, 2018; Caruso, 2019) and positively correlates with
disease activity and negatively with response to treatment using
corticosteroids in UC or anti-TNF-α in CD (Egesten et al., 2007;
Lacher et al., 2007; Luther et al., 2018; Zhong et al., 2022). Serum
CXCL9 levels also reflect disease activity in both UC and CD
(Caruso, 2019; Bergemalm et al., 2021; Boucher et al., 2022; Chen
et al., 2022) and circulating CXCL9 was identified in preclinical CD
and UC as an IBD-risk biomarker (Bergemalm et al., 2021;
Leibovitzh et al., 2023) that predicts relapse in UC and CD
(Kessel et al., 2021; Walshe et al., 2022). At the molecular level,
CXCL9 has been shown to inhibit the reconstitution of the
intestinal mucosa after injury (Lu et al., 2015) and to control
E. coli overgrowth through the pyruvate dehydrogenase-encoding
aceE gene in a DSS-induced colitis model (Wei et al., 2022). Hence,
CXCL9 released by endothelial cells might not only increase
immune cell recruitment but also may compromise the
epithelial barrier and alter the microbiota in intestinal
inflammation.

Fractalkine/CX3CL1

Fractalkine (FKN/CX3CL1) is a transmembrane protein which
mediates leukocyte adhesion to endothelial cells (Sans et al., 2007).
In addition, a soluble form of fractalkine with chemoattractive
properties is secreted by cleavage. Its receptor, CX3CR1, is
expressed primarily on the surface of monocytes, natural killer
cells, and CD8+ T cells and mediates both adhesive and
chemoattractive functions (Sans et al., 2007). Fractalkine
expression is upregulated by inflammatory cytokines (IFN-γ,
IL-1β and TNF-α) or by direct leukocyte contact (Muehlhoefer
et al., 2000; Sans et al., 2007), and has been detected in intestinal
epithelial cells and endothelial cells both in normal small intestine
and in active Crohn’s disease mucosa (Muehlhoefer et al., 2000).
However, significantly higher levels of fractalkine mRNA were
found in the intestine during active CD and UC (Muehlhoefer
et al., 2000; Brand et al., 2006; Kobayashi et al., 2007). Similarly,
HIECs isolated from IBD patients exhibited significantly stronger

fractalkine expression as compared to control HIECs (Sans et al.,
2007). This correlated with significantly higher numbers of
mucosal circulating CX3CR1+ T cells in active IBD compared
to inactive IBD or healthy subjects (Kobayashi et al., 2007; Sans
et al., 2007). The presence of two CX3CR1 polymorphisms (T280M
and V249I) has been associated with intestinal stenosis in CD
patients (Brand et al., 2006; Sabate et al., 2008). The knockout/
blockade of fractalkine attenuated mucosal inflammation in
murine colitis models and showed a moderate clinical response
in CD patients (Wakita et al., 2017; Kuboi et al., 2019; Tabuchi
et al., 2019; Matsuoka et al., 2021). Targeting endothelial
fractalkine might be particularly important to block leukocyte
adhesion and migration, platelet adhesion and even
angiogenesis (Scaldaferri et al., 2009; Rutella et al., 2011).

GBP-1 and GBP-2

Two members of the guanylate binding protein family, GBP-1
and GBP-2, were detected in our analysis. GBPs are large GTPases,
which are expressed in response to stimulation by inflammatory
cytokines (Britzen-Laurent et al., 2016). GBP-1 is among the most
highly induced proteins by IFN-γ in eukaryotic cells. In vivo, a
strong expression of GBP-1 is associated with the presence of
inflammation and was detected in inflamed tissues during
autoimmune diseases or IBD, where it is mostly associated with
blood vessels (Lubeseder-Martellato et al., 2002; Haep et al., 2015;
Ning et al., 2023). In pediatric patients with IBD, a high expression
of GBP-1 was associated with an absence of early response to anti-
TNF treatment (Salvador-Martín et al., 2021). Murine GBP-1/GBP-
2b is also upregulated during experimental colitis (de Buhr et al.,
2006). Intracellular expression of GBP-1 inhibits angiogenesis in
endothelial cells (Guenzi et al., 2001), and inhibits proliferation and
migration in tumor cells and intestinal epithelial cells, while
preventing cell apoptosis (Schnoor et al., 2009; Britzen-Laurent
et al., 2013; Ostler et al., 2014). GBP-1 is also able to regulate
T-cell receptor signaling (Forster et al., 2014). Interestingly, GBP-1 is
specifically and efficiently secreted from endothelial cells by a non-
classical, likely ABC transporter-dependent, pathway (Naschberger
et al., 2006; Naschberger et al., 2017; Carbotti et al., 2020). GBP-1 has
been detected in the serum or cerebrospinal fluid during infectious
and inflammatory diseases including bacterial meningitis, systemic
lupus erythematosus, rheumatoid arthritis and systemic sclerosis
(Naschberger et al., 2006; Hammon et al., 2011; Naschberger et al.,
2017). The functions of secreted GBP-1 and GBP-2 remain
unknown and further studies are warranted to investigate their
potential as blood biomarkers in IBD, as well as their function on the
intestinal epithelial barrier.

IL-18BP

IL-18 binding protein (IL-18BP) is a natural circulating high-
affinity antagonist of interleukin-18 (IL-18), which belongs to the
IL-1 superfamily. While IL-18 is produced by a range of immune
and non-immune cells including macrophages, dendritic cells
(DCs), fibroblasts and intestinal epithelial cells, its receptor (IL-
18R) is expressed by T cells, macrophages, NK-cells or endothelial
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cells (Kaplanski, 2018). IL-18BP blocks the binding of IL-18 to IL-
18R, thereby dampening IFN-γ production. In children and adult
CD patients, elevated expression of both IL-18 and IL-18BP has been
detected in mucosal samples, with intestinal endothelial cells and
macrophages being the major sources of IL-18BP (Corbaz et al.,
2002). Higher IL-18 and IL-18BP levels have also been observed in
the serum of IBD patients as compared to controls, which might be
attributed to secretion by endothelial cells (Corbaz et al., 2002;
Ludwiczek et al., 2005; Naftali et al., 2007; Leach et al., 2008). In
particular in CD, circulating levels of both IL-18 and IL-18BP
correlated with disease activity, which is well in agreement with
the exacerbated Th1 immune response characteristic of the disease
(Corbaz et al., 2002; Ludwiczek et al., 2005; Naftali et al., 2007; Leach
et al., 2008). However, high levels of free unbound IL-18 are still
detectable in CD patients, suggesting that IL-18BP is not produced
in sufficient amounts to compensate the effects of IL-18 (Corbaz
et al., 2002; Ludwiczek et al., 2005; Naftali et al., 2007; Leach et al.,
2008). In DSS-induced experimental colitis the administration of IL-
18BP or the neutralization of IL-18 was able to attenuate intestinal
inflammation and weight loss (Siegmund et al., 2001; Sivakumar
et al., 2002; Siegmund et al., 2004). IL-18BP may act anti-
inflammatory not only by inhibition of immune cell recruitment
but also through inhibition of IL-18-induced intestinal epithelial
permeability (Allam et al., 2018). This is supported by the fact that,
the knock-out of IL-18 in endothelial cells, hematopoietic cells or in
intestinal epithelial cells was found to abrogate DSS-induced colitis,
while the knock-out of IL-18R was only protective when present in
intestinal epithelial cells (Nowarski et al., 2015). Overall, IL-18BP is
produced and released during IBD, notably by endothelial cells,
where it exerts protective effects by dampening the pro-
inflammatory effects of IL-18.

Complement factors

Our analysis has revealed an increased secretion of three
complement system members in IFN-γ-stimulated intestinal
endothelial cells: the complement C1r subcomponent (C1R) from
the classical pathway and the complement factor B (CFB) and H
(CFH) from the alternative pathway (Lubbers et al., 2017).
Complement proteins are produced and secreted mostly by
hepatocytes but also by endothelial cells, epithelial cells and
leukocytes (Morgan and Gasque, 1997; Lubbers et al., 2017). IBD
patients exhibit increased levels of circulating CFB (Nielsen et al.,
1978; Campbell et al., 1982; Adinolfi and Lehner, 1988) and a similar
increase of serum CFB has been observed in DSS-induced and
bisphenol A (BPA)-induced experimental colitis in mice (Huang
et al., 2022). More recently, genome-wide association studies
(GWAS) have identified one SNP (rs4151657) at the CFB locus,
which represents a risk variant for UC susceptibility (Juyal et al.,
2015; Gupta et al., 2016; Shi et al., 2020; Mortlock et al., 2023). The
presence of the rs4151651 SNP was associated with increased CFB
expression, and CFB expression was shown to correlate with disease
activity (Shi et al., 2020; Mortlock et al., 2023). CFB expression can
be induced in human glomerular endothelial cells and intestinal
epithelial cells by different inflammatory cytokines and is found in
increased concentrations in the jejunal fluid of IBD patients
(Ahrenstedt et al., 1990; Ostvik et al., 2014; Sartain et al., 2016).

In contrast to CFB, very little is known about the role of CFH and
C1r in IBD. C1r concentration was significantly increased in the
serum of CD patients in clinical and serological remission in
response to treatment with the anti-TNF-α antibody infliximab,
suggesting an inverse correlation between C1r production and
disease activity (Gazouli et al., 2013).

Potential new angiocrine factors in IBD

Little is known about the role of CPXM1, IFI30 and SECTM1 in
IBD, which were also among the top ten candidates of our screening.
SECTM1 is an IFN-γ-regulated molecule acting as a co-stimulatory
molecule in T and NK cells, where it binds CD7 (Lyman et al., 2000;
Wang et al., 2012; Hubel et al., 2019). SECTM1 is expressed by
antigen-presenting cells and epithelial cells that may also secrete a
soluble form (Lam et al., 2005; Kamata et al., 2016).
Carboxypeptidase X-1 (CPX-1), an inactive member of the
metallocarboxypeptidase family encoded by the CPXM1 gene, is
also a secreted protein (Reznik and Fricker, 2001; Kim et al., 2015).
CPXM1 expression is upregulated in the inflamed intestinal mucosa
of CD patients (Hong et al., 2017). Finally, IFN-γ-inducible
lysosomal thiol reductase (IFI30/GILT) is a thiol reductase
involved in the processing of antigenic proteins for antigen
presentation by MHC class II molecules (Barjaktarević et al.,
2006). Upregulation of IFI30 has been observed in uterine
microvascular endothelial cells in response to IFN-γ (Kitaya
et al., 2007).

In conclusion, the important pathogenic role of the
vasculature in IBD has been appreciated only recently. Here,
we identified and discussed factors secreted from HIEC in the
presence of IFN-γ stimulation. Among these factors, CXCL9,
CXCL10 and fractalkine have been already described to be closely
associated with IBD pathogenesis either in preclinical murine
models or in patients. Moreover, we identified novel factors
secreted from IFN-γ-activated HIEC including GBP-1, GBP-2,
CPXM1, IFI30 and SECTM1. These factors may warrant further
studies on their role in IBD pathogenesis and as target for disease
monitoring.
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